Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices
نویسندگان
چکیده
منابع مشابه
Quasi-Cyclic Generalized Hadamard Matrices
In this paper, we define quasi-cyclic(QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone(LCZ) sequence set which has correlation value −1 within low correlation zone.
متن کاملNew Constructions of Balanced Quasi-Cyclic Generalized Hadamard Matrices
In this paper, we define quasi-cyclic (QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone (LCZ) sequence set which has correlation value −1 within low correlation zone.
متن کاملButson Hadamard matrices with partially cyclic core
In this paper, we introduce a class of generalized Hadamard matrices, called a Butson Hadamard matrix with partially cyclic core. Then a new construction method for Butson Hadamard matrices with partially cyclic core is proposed. The proposed matrices are constructed from the optimal balanced low-correlation zone(LCZ) sequence set which has correlation value −1 within LCZ.
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملRanks of Hadamard Matrices and Equivalence of Sylvester Hadamard and Pseudo-Noise Ma- trices
In this paper we obtain several results on the rank properties of Hadamard matrices (including Sylvester Hadamard matrices) as well as (generalized) Hadamard matrices. These results are used to show that the classes of (generalized) Sylvester Hadamard matrices and of generalized pseudo-noise matrices are equivalent, i.e., they can be obtained from each other by means of row/column permutations....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 35 شماره
صفحات -
تاریخ انتشار 2006